Heparin and Hypotension

Healthy appearing patient with afib s/p ablation and returning for repeat ablation for recurrent afib. Anesthesia induced normally and patient VSS. 3 minutes after a request of a heparin bolus, patient dropped their SBP into the upper 40s, lower 50s. Patient recovered well after small bolus of epinephrine. ICE used to rule out pericardial effusion as well as confirm normal LVEF and RVEF.

From IndiaMart.com

The hemodynamic effects of heparin and their relation to ionized calcium levels. J THoRAc CARDIOVASC SURG 91:303-306, 1986.

Histamine blockade and cardiovascular changes following heparin administration during cardiac surgery. J Cardiothorac Anesth. 1990 Dec;4(6):711-4.

Heparin-Mediated Hypotension Associated with Cardiac Surgery. Anesthesia & Analgesia: September 2000 – Volume 91 – Issue 3 – p 766-767.

Preoperative Heparin Therapy Causes Immune-Mediated Hypotension Upon Heparin Administration for Cardiac Surgery. Journal of Cardiothoracic and Vascular Anesthesia. Volume 24, Issue 1, February 2010, Pages 69-72.

Prediction of heparin induced hypotension during cardiothoracic surgery: A retrospective observational study. Anaesth pain & intensiv care 2019;23(2):145-150.

Angiotensin Receptor Blocker (ARB) Reversal

From Angiotensin Axis Blocking Drugs In the Perioperative Period. Anesthesiology News, Feb 2016

What does an angiotensin receptor blocker (ARB) do?

Angiotensin II receptor blockers (ARBs) represent a newer class of effective and well tolerated antihypertensive agents 1. Several clinical studies have indicated the beneficial effects of ARBs in hypertensive patients such as reduction of left ventricular hypertrophy, decrease in ventricular arrhythmias, and improved diastolic function 1. Inhibitors of the renin-angiotensin system (RAS), either angiotensin converting enzyme (ACE) inhibitors or ARBs, mediate vasodilation and consequently decrease blood-pressure by different mechanisms 1. ARBs specifically inhibit angiotensin II from binding to its receptor, the Angiotensin-1 (AT 1) receptor on vascular smooth muscle cells. This blockade results in increased angiotensin II and normal bradykinin plasma levels. ARBs were developed to overcome several deficiencies of ACE inhibitors, which, by comparison, lead to decreased angiotensin II, but increased bradykinin levels. Hence, the key advantage of ARBs over ACE inhibitors is their lack of adverse effects related to bradykinin potentiation. ARBs have been shown to reduce morbidity and mortality associated with hypertension, and therefore, it is not surprising that an increasing number of patients scheduled for surgery are chronically treated with ARBs 2. However, RAS blockade increases the risk of severe hypotension during and after anesthetic induction. ACE-inhibitors are well known for inducing severe circulatory side effects during anesthesia, which led to the general recommendation to withhold the drug on the day of surgery 3.

Refractory hypotension during general anesthesia despite preoperative discontinuation of an angiotensin receptor blocker. F1000Research 2013, 2:12.

Comparison of Angiotensin‐Converting Enzyme Inhibitor and Angiotensin Receptor Blocker Management Strategies Before Cardiac Surgery: A Pilot Randomized Controlled Registry Trial. Journal of the American Heart Association. 2018;7:e009917.

Consequences of continuing renin angiotensin aldosterone system antagonists in the preoperative period: a systematic review and meta-analysis. BMC Anesthesiol. 2018 Feb 26;18(1):26.

From Angiotensin Axis Blocking Drugs In the Perioperative Period. Anesthesiology News, Feb 2016

How do I reverse an ARB in an emergency?

Chronic AT 1 blockade also reduces the vasoconstrictor response to α 1 receptors activated by norepinephrine, which explains why ARB-induced hypotension can be so resistant to phenylephrine, ephedrine and norepinephrine 2, 8 Clinical studies have shown significant vasoconstrictor effects of vasopressin and increased cardiac filling during echocardiographic measurements 2.

Vasopressin or its synthetic analogues can restore the sympathetic response and may be useful pressors in cases of refractory hypotension during anaphylaxis 9 and septic shock 10 as well as in patients on RAS inhibitors, although norepinephrine has been reported to have a more favorable effect on splanchnic perfusion and oxygen delivery 11.

Refractory hypotension during general anesthesia despite preoperative discontinuation of an angiotensin receptor blocker. F1000Research 2013, 2:12.

Angiotensin Axis Blocking Drugs In the Perioperative Period. Anesthesiology News, Feb 2016.

  • When conventional therapies such as: decreasing the anesthetic agent, volume expansion, phenylephrine, ephedrine, norepinephrine, and epinephrine are not effective, exogenous vasopressin may improve hypotension. To date, at least 5 clinical trials have demonstrated that patients on chronic ACEI/ARB undergoing general anesthesia, respond to exogenous vasopressin derivatives with an increase in blood pressure and fewer hypotensive episodes.6,7 Typically, a 0.5-1 unit bolus of AVP is administered to achieve a rise in mean arterial pressure.4 The subsequent recommended infusion dose is 0.03U/min for AVP and 1-2 mcg/kg/h for terlipressin. Caution should be used as V1 agonists have been associated with the following deleterious effects: reduction in cardiac output and systemic oxygen delivery, decreased platelet count, increased serum aminotransferases and bilirubin, hyponatremia, increased pulmonary vascular resistance, decrease in renal blood flow, increase in renal oxygen consumption, and splanchnic vasoconstriction.
  • Studies involving cardiac surgical patients suggest that MB treatment for patients with VS may reduce morbidity and mortality.5 It has also been suggested that the early use (preoperative use in patients at risk for VS) of MB in patients undergoing coronary artery bypass grafting may reduce the incidence of VS.5,9A bolus dose of 1-2mg/kg over 10-20 minutes followed by an infusion of 0.25mg/kg/hr for 48-72 hours is typically utilized in clinical practice and trials (with a maximum dose of 7 mg/kg).10 Side effects include cardiac arrhythmias (transient), coronary vasoconstriction, increased pulmonary vascular resistance, decreased cardiac output, and decreased renal and mesenteric blood flow.1 Both pulse and cerebral oximeter readings may not be reliable during MB administration due to wavelength interference.11,12 The use of MB is absolutely contraindicated in patients with severe renal impairment because it is primarily eliminated by the kidney.13 It may also cause methemoglobinemia and hemolysis.13 At high doses, neurotoxicity may occur secondary to the generation of oxygen free radicals. Neurologic dysfunction may be more severe in patients receiving serotoninergic agents such as: tramadol, ethanol, antidepressants, dopamine agonists and linezolid. Recommended doses for VS ranging from 1-3 mg/kg do not typically cause neurologic dysfunction.14 However, recent reports suggest that MB in doses even ≤ 1mg/kg in patients taking serotonin reuptake inhibitors (SSRIs) may lead to serotonin toxicity due to its monoamine oxidase (MAO) inhibitor property.15

Vasoplegic Syndrome and Renin-Angiotensin System Antagonists. APSF Newsletter, Circulation 94,429 • Volume 27, No. 1 • Summer-Spring 2012.

Vasopressin for persistent hypotension due to amlodipine and olmesartan overdose: A case report. Ann Med Surg (Lond). 2021 May; 65: 102292.

Vasoplegic syndrome following cardiothoracic surgery—review of pathophysiology and update of treatment options. Crit Care. 2020; 24: 36.

Refractory hypotension during general anesthesia despite preoperative discontinuation of an angiotensin receptor blocker. F1000Research 2013, 2:12.

Terlipressin for refractory hypotension following angiotensin-II receptor antagonist overdose. Anaesthesia, 2006,61, pages 402–414.

Angiotensin II for the Treatment of Vasodilatory Shock. N Engl J Med. 2017 Aug 3;377(5):419-430.

Vasopressin: physiology and clinical use in patients with vasodilatory shock: a review. Neth J Med. 2005 Jan;63(1):4-13.

Treatment of intraoperative refractory hypotension with terlipressin in patients chronically treated with an antagonist of the renin-angiotensin system. Anesth Analg. 1999 May;88(5):980-4.

Role of vasopressinergic V1 receptor agonists in the treatment of perioperative catecholamine-refractory arterial hypotension. Best Pract Res Clin Anaesthesiol. 2008 Jun;22(2):369-81.

Predicting response to methylene blue for refractory vasoplegia following cardiac surgery. Pharmacotherapy Conference: 2013 American College of Clinical Pharmacy Annual Meeting. October 2013.

Tranexamic Acid vs. Amicar

** Updated June 2022**

Over the years, our hospital has been using Amicar… until there was a drug shortage.  With that drug shortage came a different drug called tranexamic acid.  We’ve been using it for awhile and I can’t seem to tell a difference in coagulation between the two drugs.  Let’s break down each one and also discuss cost-effectiveness.

Amicar

What is it?


From MedPage Today

Tranexamic Acid

What is it?

Tranexamic acid acts by reversibly blocking the lysine binding sites of plasminogen, thus preventing plasmin activation and, as a result, the lysis of polymerised fibrin.12 Tranexamic acid is frequently utilised to enhance haemostasis, particularly when fibrinolysis contributes to bleeding. In clinical practice, tranexamic acid has been used to treat menorrhagia, trauma-associated bleeding and to prevent perioperative bleeding associated with orthopaedic and cardiac surgery.13–16 Importantly, the use of tranexamic acid is not without adverse effects. Tranexamic acid has been associated with seizures,17 18 as well as concerns of possible increased thromboembolic events, including stroke which to date have not been demonstrated in randomised controlled trials.

Fibrinolysis is the mechanism of clot breakdown and involves a cascade of interactions between zymogens and enzymes that act in concert with clot formation to maintain blood flow.25 During extracorporeal circulation, such as cardiopulmonary bypass used in cardiac surgery, multiplex changes in haemostasis arise that include accelerated thrombin generation, platelet dysfunction and enhanced fibrinolysis.26 Tranexamic acid inhibits fibrinolysis, a putative mechanism of bleeding after cardiopulmonary bypass, by forming a reversible complex with plasminogen.

Dosing:

  • Ortho/Spine
  • OB
  • Trauma

Currently at our hospital (June 2022):

TXA DOSING AND ADMINISTRATION OVERVIEW

How supplied from PharmacyTXA 1000mg/10mL vials Will not provide premade bags like with Amicar; Amicar is a more complex mixture than TXA Will take feedback on this after go-live and reassess
Where it will be supplied from PharmacyPOR-SUR1 Omnicell (in HeartCore Room)   Perfusion Tray (will replace aminocaproic acid vials 6/7)  
Recommended Dosing (see below for evidence)~20 mg/kg total dose Can give as: 20 mg/kg x 1, OR 10 mg/kg x 1, followed by 1-2 mg/kg/h*   Perfusion may also prime bypass solution with 2 mg/kg x 1*
Preparation & AdministrationIV push straight drug (1000mg/10mL) from vial   AND/OR   Mix vial of 1000mg/10mL TXA with 250mL NS for continuous infusion*

TXA & Amicar ADRs

  • Seizure risk may be increased also by duration of prolonged open-chamber surgery based on findings from Zuffery, et al. Anesthesiology 2021.
  • Per OR pharmacist at Scripps Mercy, they have not seen an increased incidence of seizures in their patient-population (anecdotally)

DOSING EVIDENCE

There are a number of dosing strategies in the literature. What I recommend for maximal safety and efficacy is taken from Zuffery, et al. Anesthesiology 2021 meta-analysis and is practiced at Scripps Mercy.

  • ~ 20 mg/kg total dose recommended in this meta-analysis.
  • Two dosing strategies they report that were as effective as high-dose but with lower seizure risk than high dose:

Exparel

Liposomal bupivacaine (Exparel) is a longer acting form of traditional bupivacaine that delivers the drug by means of a multivesicular liposomal system.

Exparel FDA drug sheet

  • Max Dose: 266 mg or 4mg/kg (6yo-17yo). Interscalene NB max dose (adults) =133mg
Exparel website: Field blocks
Exparel website: Interscalene NB

Exparel dosing company info: Pocket Dosing Guide , Billing Guide

Liposomal bupivacaine: a review of a new bupivacaine formulation. J Pain Res. 2012; 5: 257–264.

Emerging roles of liposomal bupivacaine in anesthesia practice. J Anaesthesiol Clin Pharmacol. 2017 Apr-Jun; 33(2): 151–156.

Liposomal bupivacaine peripheral nerve block for the management of postoperative pain. Cochrane Database Syst Rev. 2016 Aug 25;2016(8):CD011476.

Liposomal bupivacaine infiltration at the surgical site for the management of postoperative pain. Cochrane Database Syst Rev. 2017 Feb; 2017(2): CD011419.

Novel Local Anesthetics in Clinical Practice: Pharmacologic Considerations and Potential Roles for the Future. Anesth Pain Med. 2022 Feb; 12(1): e123112.

Cardiac/Thoracic

The role of liposomal bupivacaine in thoracic surgery. J Thorac Dis. 2019 May; 11(Suppl 9): S1163–S1168.

Intercostal nerve blockade for thoracic surgery with liposomal bupivacaine: the devil is in the details. J Thorac Dis. 2019 May; 11(Suppl 9): S1202–S1205.

  • VATs: Dilute liposomal bupivacaine (266 mg, 20 cc) mixed with 20 cc injectable saline. We use two syringes to save time (refill syringe between injections).
  • For planned thoracotomy, we add 60 cc injectable saline for wider injection.
  • The efficacy of this strategy requires attention to specific details, such as timing and technique of injection, dilution with saline, and injection of multiple interspaces (typically interspaces 3–10 when technically possible).
  • Inject EXPAREL slowly and deeply (generally 1-2 mL per injection) into soft tissues using a moving needle technique (ie, inject while withdrawing the needle)
  • Infiltrate above and below the fascia and into the subcutaneous tissue
  • Aspirate frequently to minimize the risk of intravascular injection
  • Use a 25-gauge or larger-bore needle to maintain the structural integrity of the liposomal particles
  • Inject frequently in small areas (1-1.5 cm apart) to ensure overlapping analgesic coverage

Liposomal Bupivacaine Versus Bupivacaine for Intercostal Nerve Blocks in Thoracic Surgery: A Retrospective Analysis. Pain Physician. 2020 Jun;23(3):E251-E258.

Intercostal Blocks with Liposomal Bupivacaine in Thoracic Surgery: A Retrospective Cohort Study. J Cardiothorac Vasc Anesth. 2021 May;35(5):1404-1409.

Is liposomal bupivacaine superior to standard bupivacaine for pain control following minimally invasive thoracic surgery? Interactive CardioVascular and Thoracic Surgery, Volume 31, Issue 2, August 2020, Pages 199–203, https://doi.org/10.1093/icvts/ivaa083

Paravertebral Nerve Block With Liposomal Bupivacaine for Pain Control Following Video-Assisted Thoracoscopic Surgery and Thoracotomy. J Surg Res. 2020 Feb;246:19-25.

Rib fractures case report: ESP block


Evaluation of an Enhanced Recovery After Surgery Protocol Including Parasternal Intercostal Nerve Block in Cardiac Surgery Requiring Sternotomy. Am Surg. 2021 Dec;87(10):1561-1564.

Ultrasound-guided Modified Parasternal Intercostal Nerve Block: Role of Preemptive Analgesic Adjunct for Mitigating Poststernotomy Pain. Anesth Essays Res. 2020 Apr-Jun; 14(2): 300–304.

Comparison of preincisional and postincisional parasternal intercostal block on postoperative pain in cardiac surgery. J Card Surg. 2020 Jul;35(7):1525-1530.

Ultrasound-guided parasternal intercostal nerve block for postoperative analgesia in mediastinal mass resection by median sternotomy: a randomized, double-blind, placebo-controlled trial. BMC Anesthesiol. 2021; 21: 98.

Pain Relief Following Sternotomy in Conventional Cardiac Surgery: A Review of Non Neuraxial Regional Nerve Blocks. Ann Card Anaesth. 2020 Apr-Jun; 23(2): 200–208.

A Novel Use of Liposomal Bupivacaine in Erector Spinae Plane Block for Pediatric Congenital Cardiac Surgery. Case Rep Anesthesiol. 2021; 2021: 5521136.

Breast/Gen Surg

Evaluating the Efficacy of Two Regional Pain Management Modalities in Autologous Breast Reconstruction. Plast Reconstr Surg Glob Open. 2022 Jan 19;10(1):e4010.

Perioperative Blocks for Decreasing Postoperative Narcotics in Breast Reconstruction. Anesth Pain Med. 2020 Oct; 10(5): e105686.

Opioid-sparing Strategies in Alloplastic Breast Reconstruction: A Systematic Review. Plast Reconstr Surg Glob Open. 2021 Nov 16;9(11):e3932.

Comparison of the efficacy of erector spinae plane block performed with different concentrations of bupivacaine on postoperative analgesia after mastectomy surgery: ramdomized, prospective, double blinded trial. BMC Anesthesiol. 2019; 19: 31.


Efficacy of liposomal bupivacaine versus bupivacaine in port site injections on postoperative pain within enhanced recovery after bariatric surgery program: a randomized clinical trial. Surg Obes Relat Dis. 2019 Sep;15(9):1554-1562.

The use of extended release bupivacaine with transversus abdominis plane and subcostal anterior quadratus lumborum catheters: A retrospective analysis of a novel technique. J Anaesthesiol Clin Pharmacol. 2020 Jan-Mar; 36(1): 110–114.

Ortho

Pain Control and Functional Milestones in Total Knee Arthroplasty: Liposomal Bupivacaine versus Femoral Nerve Block. Clin Orthop Relat Res. 2017 Jan;475(1):110-117.

OB

Transversus Abdominis Plane Block With Liposomal Bupivacaine for Pain After Cesarean Delivery in a Multicenter, Randomized, Double-Blind, Controlled Trial. Anesth Analg. 2020 Dec; 131(6): 1830–1839.

Fascia Iliaca blocks for TAVR under conscious sedation

Editorial: The use of Fascia iliaca Block with Minimal Conscious Sedation in Transcatheter Aortic Valve Replacement: Advances in TAVR Anesthesia. Cardiovasc Revasc Med. 2020 May;21(5):602-603. doi: 10.1016/j.carrev.2020.03.017.

Local Anesthesia-Conscious Sedation: The Contemporary Gold Standard for Transcatheter Aortic Valve Replacement. JACC Cardiovasc Interv. 2018 Mar 26;11(6):579-580. doi: 10.1016/j.jcin.2018.01.238.

Transfemoral Transcatheter Aortic Valve Replacement Using Fascia Iliaca Block as an Alternative Approach to Conscious Sedation as Compared to General Anesthesia. Cardiovasc Revasc Med. 2020 May;21(5):594-601. doi: 10.1016/j.carrev.2019.08.080. Epub 2019 Sep 7.

**NYSORA U/S guided Fascia Iliaca nerve block**

From EMbeds.co.uk – FOAMed @ CHT-ED

TCT-808 Transfemoral Transcatheter Aortic Valve Replacement Using Fascia Iliaca Block as an Alternative Approach to Conscious Sedation as Compare to General Anesthesia: Findings From a Single Center. J Am Coll Cardiol. 2019 Oct, 74 (13_Supplement) B792

Handoffs in Medicine

Patient safety is crucial for the delivery of effective, high-quality healthcare1 and is defined by the World Alliance for Patient Safety of WHO as ‘the reduction of risk of unnecessary harm associated with healthcare to an acceptable minimum’. The practice and delivery of healthcare is argued to be fundamentally and critically dependent on effective and efficient communication. Depending on physicians’ needs and responsibilities, handoff content will vary, requiring customization by individual physician groups; there is no “one size fits all” content.

Communication

Communication in healthcare: a narrative review of the literature and practical recommendations. Int J Clin Pract. 2015 Nov;69(11):1257-67. doi: 10.1111/ijcp.12686. Epub 2015 Jul 6.

Standardization of Inpatient Handoff Communication. Pediatrics. 2016 Nov;138(5):e20162681. doi: 10.1542/peds.2016-2681.

Communication at Transitions of Care. Pediatr Clin North Am. 2019 Aug;66(4):751-773. doi: 10.1016/j.pcl.2019.03.004.

Impact of the communication and patient hand-off tool SBAR on patient safety: a systematic review. BMJ Open. 2018 Aug 23;8(8):e022202. doi: 10.1136/bmjopen-2018-022202.

Cardiac Surgery

Standardization improves postoperative patient handoff experience for junior clinicians. Am J Manag Care. 2020 Jun 1;26(6):e184-e190. doi: 10.37765/ajmc.2020.43494.

A standard handoff improves cardiac surgical patient transfer: operating room to intensive care unit. J Healthc Qual. Jan-Feb 2015;37(1):22-32. doi: 10.1097/01.JHQ.0000460123.91061.b3.

An Implementation Science Approach to Handoff Redesign in a Cardiac Surgery Intensive Care Unit. Ann Thorac Surg. 2020 Jun;109(6):1782-1788. doi: 10.1016/j.athoracsur.2019.09.047. Epub 2019 Nov 9

A Partially Structured Postoperative Handoff Protocol Improves Communication in 2 Mixed Surgical Intensive Care Units: Findings From the Handoffs and Transitions in Critical Care (HATRICC) Prospective Cohort Study. Ann Surg. 2020 Mar;271(3):484-493. doi: 10.1097/SLA.0000000000003137.

Assuring Sustainable Gains in Interdisciplinary Performance Improvement: Creating a Shared Mental Model During Operating Room to Cardiac ICU Handoff. Pediatr Crit Care Med. 2017 Sep;18(9):863-868. doi: 10.1097/PCC.0000000000001231.

Face-to-face handoff: improving transfer to the pediatric intensive care unit after cardiac surgery. Am J Med Qual. Mar-Apr 2015;30(2):119-25. doi: 10.1177/1062860613518419. Epub 2014 Jan 17.

AnesthesiologyNews: Handovers During Cardiac Surgery Can Increase Mortality, Aug 2021.

Nurses & Shifts

Shift-to-Shift Handoff Effects on Patient Safety and Outcomes. Am J Med Qual. Jan/Feb 2017;32(1):34-42. doi: 10.1177/1062860615612923. Epub 2016 Jul 9

Nurse Handoff Communication. Semin Oncol Nurs. 2017 Dec;33(5):536-543. doi: 10.1016/j.soncn.2017.10.002. Epub 2017 Oct 26.

Tricuspid Clip

Updated: August 2021

Echocardiographic Imaging for Transcatheter Tricuspid Edge‐to‐Edge Repair. Journal of the American Heart Association. 2020;9:e015682.

State of the Art Review of Echocardiographic Imaging in the Evaluation and Treatment of Functional Tricuspid Regurgitation. Circ Cardiovasc Imaging.2016;9:e005332.

Screening TEE for Transcatheter Tricuspid Valve Repair. Cardiac Interventions Today. May/June 2020.

Echocardiography for Tricuspid Valve Intervention. Cardiac Interventions Today. July/August 2018.

Tricuspid Clip in Tricuspid Regurgitation. Amer Coll of Card, Feb 2020.

Percutaneous management of tricuspid regurgitation. Image-guided step-by-step MitraClip procedure. REC Interv Cardiol. 2020;2:118-128.

Intraprocedural Imaging of Transcatheter Tricuspid Valve Interventions. JACC: Cardiovascular Imaging,Volume 12, Issue 3, March 2019, Pages 532-553.

Transcatheter Tricuspid Valve Intervention: Coaptation Devices. Front. Cardiovasc. Med., 13 August 2020.

 


 
From US Cardiology Review

Prosthetic Heart Valves

ASE Guidelines: Recommendations For Evaluation of Prosthetic Valves with Two-Dimensional and Doppler Echocardiography.

Recommendations for Evaluation of Prosthetic Valves With Echocardiography and Doppler Ultrasound. A Report From the American Society of Echocardiography’s Guidelines and Standards Committee and the Task Force on Prosthetic Valves, Developed in Conjunction With the American College of Cardiology Cardiovascular Imaging Committee, Cardiac Imaging Committee of the American Heart Association, the European Association of Echocardiography, a registered branch of the European Society of Cardiology, the Japanese Society of Echocardiography and the Canadian Society of Echocardiography, Endorsed by the American College of Cardiology Foundation, American Heart Association, European Association of Echocardiography, a registered branch of the European Society of Cardiology, the Japanese Society of Echocardiography, and Canadian Society of Echocardiography. JASE Guidelines and Standards| Volume 22, ISSUE 9, P975-1014, September 01, 2009.

Recommendations for the imaging assessment of prosthetic heart valves: a report from the European Association of Cardiovascular Imaging endorsed by the Chinese Society of Echocardiography, the Inter-American Society of Echocardiography, and the Brazilian Department of Cardiovascular Imaging. European Heart Journal – Cardiovascular Imaging, Volume 17, Issue 6, June 2016, Pages 589–590, https://doi.org/10.1093/ehjci/jew025

Echocardiographic Assessment of Heart Valve Prostheses. J Cardiovasc Echogr. 2014 Oct-Dec; 24(4): 103–113.

From Echocardiographic Assessment of Heart Valve Prostheses. J Cardiovasc Echogr. 2014 Oct-Dec; 24(4): 103–113.
From Echocardiographic Assessment of Heart Valve Prostheses. J Cardiovasc Echogr. 2014 Oct-Dec; 24(4): 103–113.
From Echocardiographic Assessment of Heart Valve Prostheses. J Cardiovasc Echogr. 2014 Oct-Dec; 24(4): 103–113.
From Echocardiographic Assessment of Heart Valve Prostheses. J Cardiovasc Echogr. 2014 Oct-Dec; 24(4): 103–113.
From Echocardiographic Assessment of Heart Valve Prostheses. J Cardiovasc Echogr. 2014 Oct-Dec; 24(4): 103–113.
From Echocardiographic Assessment of Heart Valve Prostheses. J Cardiovasc Echogr. 2014 Oct-Dec; 24(4): 103–113.
From Echocardiographic Assessment of Heart Valve Prostheses. J Cardiovasc Echogr. 2014 Oct-Dec; 24(4): 103–113.

Evaluation of Aortic Prosthetic Valves. JASE 2018. PPT.

2020 ACC/AHA Guideline for the Management of Patients With Valvular Heart Disease: A Report of the American College of Cardiology/American Heart Association Joint Committee on Clinical Practice Guidelines. Circulation. 2021;143:e72–e227.

Prosthetic Heart Valves: Selection of the Optimal Prosthesis and Long-Term Management. Circulation. 2009;119:1034–1048.

Prosthetic Heart Valves
From Circulation. 2009;119:1034–1048
From Circulation. 2009;119:1034–1048
From Circulation. 2009;119:1034–1048
From Circulation. 2009;119:1034–1048

On-X heart valve echo. Slideshare, Jan 2016.

Ketamine and Methadone: Is more of a good thing better?

I’ve done a good deal of research on the benefits of an ERAS and Cardiac ERAS protocol to help with decreased length of hospital stay as well as early extubations and perioperative adjuvant pain control with ketamine, methadone, regional anesthesia, adjuvants to regional, etc.

What about ketamine and methadone in combination to aid decreased postoperative narcotic use?

  • Perioperative Methadone and Ketamine for Postoperative Pain Control in Spinal Surgical Patients: A Randomized, Double-blind, Placebo-controlled Trial. Anesthesiology Newly Published on March 2021. doi: https://doi.org/10.1097/ALN.0000000000003743.
    • 0.2 mg/kg of methadone (based on ideal body weight, up to a maximal dose of 20 mg)250 mg of ketamine was added to the dextrose 5% in water bag (total volume 500 ml). 500 ml bags were connected to a pump that was programed to deliver an infusion of ketamine dosed at ideal body weight (or an equal volume of dextrose 5% in water) at a rate of 0.3 mg · kg−1 · h−1 from induction of anesthesia until surgical closure, at which time the infusion was decreased to 0.1 mg · kg−1 · h−1. The infusion was maintained at a rate of 0.1 mg · kg−1 · h−1 in the postanesthesia care unit (PACU) and for the next 48 postoperative hours. Dosing of ketamine was based on recommendations in the literature17,18  and from clinical experience at our institution.
  • From Perioperative Methadone and Ketamine for Postoperative Pain Control in Spinal Surgical Patients: A Randomized, Double-blind, Placebo-controlled Trial. Anesthesiology Newly Published on March 2021. doi: https://doi.org/10.1097/ALN.0000000000003743.

    Management of Neuropathic Chronic Pain with Methadone Combined with Ketamine: A Randomized, Double Blind, Active-Controlled Clinical Trial. Pain Physician. 2017 Mar;20(3):207-215.

    Role of Ketamine and Methadone as Adjunctive Therapy in Complex Pain Management: A Case Report and Literature Review. Indian J Palliat Care. 2017 Jan-Mar; 23(1): 100–103.

    Ketamine: an introduction for the pain and palliative medicine physician. Pain Physician. 2007 May;10(3):493-500.

    Prescription of Controlled Substances: Benefits and Risks. StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing; 2020 Jan.2020 Jun 27.

    The perioperative combination of methadone and ketamine reduces post-operative opioid usage compared with methadone alone. Acta Anaesthesiol Scand. 2012 Nov;56(10):1250-6.

    The similarities and differences in impulsivity and cognitive ability among ketamine, methadone, and non-drug users. Psychiatry Res. 2016 Sep 30;243:109-14.

    Comparison of ketamine-dexmedetomidine-methadone and tiletamine-zolazepam-methadone combinations for short-term anaesthesia in domestic pigs. Vet J. 2015 Sep;205(3):364-8.

    A Systematic Review of NMDA Receptor Antagonists for Treatment of Neuropathic Pain in Clinical Practice. Clin J Pain. 2018 May;34(5):450-467.

    [Drugs for postoperative analgesia: routine and new aspects: Part 2: opioids, ketamine and gabapentinoids]. Anaesthesist. 2008 May;57(5):491-8.

    Multimodal Analgesia Pain Management

    Methadone: perioperative use; acute and chronic pain

    Buprenorphine

    Orthopedic Surgery

    Updates on Multimodal Analgesia for Orthopedic Surgery. Anesthesiol Clin. 2018 Sep;36(3):361-373.

    Enhanced Recovery After Surgery (ERAS)

    ERAS for general surgery

    Cardiac ERAS

    Non-Opioid Analgesics

    Postoperative Multimodal Analgesia Pain Management With Nonopioid Analgesics and Techniques: A Review. JAMA Surg. 2017 Jul 1;152(7):691-697.

    Preemptive Analgesia Decreases Pain Following Anorectal Surgery: A Prospective, Randomized, Double-Blinded, Placebo-Controlled Trial. Dis Colon Rectum. 2018 Jul;61(7):824-829.

    Gabapentinoids

    Ketamine

    Lidocaine

    Regional Anesthesia

    TAP block

    Regional for Cardiothoracic Anesthesia

    PECS and serratus blocks

    Thoracic blocks: ESP, PVB, TEA block

    Paravertebral catheters

    Regional Anesthesia catheters

    Adjuncts to prolong regional anesthesia