Thoracic surgery: PVB, SAPB, TEpi, ESP block, Precedex

Paravertebral Catheter Use for Postoperative Pain Control in Patients After Lung Transplant Surgery: A Prospective Observational Study.  JCVA February 2017. Volume 31, Issue 1, Pages 142–146.

To place the PV catheter at the T4-5 level, the authors used an in-plane transverse technique under ultrasound guidance, with the probe in a transverse orientation. After identifying the anatomic landmarks on ultrasound, a 17-gauge Tuohy needle was advanced in a lateral to medial direction, until the tip was beneath the transverse process. For all recipients in the study, the authors further confirmed correct PV catheter placement with real-time infusion of a local anesthetic (1-3 mL of 1.5% lidocaine with epinephrine 1:200,000); they were able to visualize on ultrasound the spread from the tip of the catheter.

Once it was confirmed that the tip remained in position, the PV catheter was secured with skin glue (Dermabond®, Ethicon, Inc.; Somerville, NJ). Next, at the PV catheter insertion site, the authors placed an occlusive dressing on a chlorhexidine-impregnated sponge (BioPatch®, Johnson & Johnson Wound Management, a division of Ethicon, Inc.; Somerville, NJ). The PV catheter was connected to an elastomeric pump (ON-Q®, Halyard Health, Alpharetta, GA), an infusion of 0.2% ropivacaine was started at a rate of 0.2 to 0.25 mL/kg/h; the maximum dose was 7 mL/h per side in bilateral lung transplant recipients and 14 mL/h in unilateral single-lung transplant recipients.

pic3
From NYSORA

Ultrasound-Guided Serratus Anterior Plane Block Versus Thoracic Epidural Analgesia for Thoracotomy Pain. JCVA February 2017. Volume 31, Issue 1, Pages 152–158.

Under sterile conditions and while patients still were in the lateral position with the diseased side up, a linear ultrasound transducer (10-12 MHz) was placed in a sagittal plane over the midclavicular region of the thoracic cage. Then the ribs were counted down until the fifth rib was identified in the midaxillary line (Fig 1).18 The following muscles were identified overlying the fifth rib: the latissimus dorsi (superficial and posterior), teres major (superior), and serratus muscles (deep and inferior). The needle (a 22-gauge, 50-mm Touhy needle) was introduced in plane with respect to the ultrasound probe, targeting the plane superficial to the serratus anterior muscle (Fig 2). Under continuous ultrasound guidance, 30 mL of 0.25% levobupivacaine was injected, and then a catheter was threaded. A continuous infusion of 5 mL/hour of 0.125% levobupivacaine then was started through the catheter.

Figure-17-Nagdev-2017-ACEP-Now-Ultrasound-Guided-Serratus-Anterior-Plane-Block-Can-Help-Avoid-Opioid-Use-for-Patients-with-Rib-Fractures-
From http://painandpsa.org/rnb/

Erector Spinae Plane Block


Effect of Continuous Paravertebral Dexmedetomidine Administration on Intraoperative Anesthetic Drug Requirement and Post-Thoracotomy Pain Syndrome After Thoracotomy: A Randomized Controlled Trial. JCVA February 2017. Volume 31, Issue 1, Pages 159–165.

Adjuvants to prolong regional anesthesia

Advertisements

Adjuvants to prolong regional anesthesia

For my single shot blocks, I’m always looking for ways to prolong my regional anesthetic effect.  For awhile, Exparel was the most talked about drug to have a 72 hour blockade.  We don’t have this medication available to us at the hospital.  Therefore, it’s time to get creative and hit the literature to see what has worked for prolonging our blocks.

regional-anesthesia-3-638

Prolonging blockade with adjuvants:

 

  • Facilitatory effects of perineural dexmedetomidine on neuraxial and peripheral nerve block: a systematic review and meta-analysis. British Journal of Anaesthesia 110 (6): 915–25 (2013).
    • Sensory block duration was prolonged by 150 min [95% confidence interval (CI): 96, 205, P,0.00001] with intrathecal dexmedetomidine. Perineural dexmedetomidine used in brachial plexus (BP) block may prolong the mean duration of sensory block by 284 min (95% CI: 1, 566, P¼0.05), but this difference did not reach statistical significance. Motor block duration and time to first analgesic request were prolonged for both intrathecal and BP block. Dexmedetomidine produced reversible bradycardia in 7% of BP block patients, but no effect on the incidence of hypotension. No patients experienced respiratory depression.
    • Considerable differences existed in the doses of perineural dexmedetomidine; doses varied between 3, 5, 10, or 15 mcg for the intrathecal route, and 30, 100, 0.75, 1 mcg/kg for the peripheral route.

 

 

 

 

 

 

dexmedetomidine-a-novel-anesthetic-agent-5-638

Other useful links:

 

Erector Spinae Plane Block

After speaking to a colleague of mine regarding regional anesthesia for thoracotomy and mastectomy, I am reading up on Erector Spinae Plane (ESP) block.

 

Indications:

 

 

Other regional blocks

Continuous ESP block catheter (my current regimen and what I’m able to get at my institution):

  • Braun Periflex catheter through 17g epidural needle
  • Cranial-to-caudal approach @ T5 (mastectomy, vats, rib fractures)
  • 20ml 0.25% bupi + epi prior to catheter
  • Catheter 5cm in space
  • 5 ml 0.25% bupi + epi after catheter placed
  • Mix: 0.125% bupi + fentanyl @ 10 ml/hr
  • If PCEA available, bolus 15ml every 3 hours; continuous as mix above.

Neuraxial anesthesia and External Cephalic Version

ACOG: If Your Baby is Breech

What is an external cephalic version?

External-Cephalic-Version
From Pregmed.org

Wikipedia: external cephalic version


Randomized trial of anaesthetic interventions in external cephalic version for breech presentation. British Journal of Anaesthesia 114 (6): 944–50 (2015)

  • Conclusions: Spinal Anesthesia (SA: hyperbaric bupivacaine 9mg + fentanyl 15mcg) increased the success rate and reduced pain for both primary and re-attempts of External Cephalic Version (ECV), whereas IV Anesthesia (IVA) using remifentanil infusion (0.1mcg/kg/min) only reduced the pain. There was no significant increase in the incidence of fetal bradycardia or emergency CS, with ECV performed under anaesthetic interventions. Relaxation of the abdominal muscles from SA appears to underlie the improved outcomes for ECV.
  • Editor’s key points: There is no consensus on best anaesthetic technique for external cephalic version (ECV).  In this study, success at ECV was higher using spinal anaesthesia compared with remifentanil infusion or no intervention.  Pain was also reduced in the remifentanil group but success at ECV was no different to the no intervention group.  The effect of spinal anaesthesia in ECV may relate to relaxation of the abdominal musculature.

Neuraxial blockade for external cephalic version: Cost analysis. J Obstet Gynaecol Res. 2015 Jul; 41(7): 1023–1031.

  • Neuraxial blockade is associated with minimal hospital and insurer cost changes in the setting of external cephalic version, while reducing the cesarean delivery rate.

External cephalic version with or without spinal anesthesia: a cost-effectiveness analysis.  American Journal of Obstetrics and Gynecology, January 2016Volume 214, Issue 1, Supplement, Pages S206–S207.  

  • It is both effective and cost-effective to utilize spinal anesthesia to perform ECV in term, nulliparous women with breech fetuses. Translation of this potentially impactful approach into broad obstetric practice should be undertaken.

Effect of Regional Anesthesia on the Success Rate of External Cephalic Version: A Systematic Review and Meta-Analysis. Obstet Gynecol. 2011 Nov; 118(5): 1137–1144.

  • Six RCTs met criteria for study inclusion. Regional anesthesia was associated with a higher external cephalic version success rate compared to intravenous or no analgesia (59.7% vs. 37.6%; pooled RR 1.58, 95% confidence interval [CI] 1.29-1.93). This significant association persisted when the data was stratified by type of regional anesthesia (spinal vs. epidural). The number needed to treat with regional anesthesia to achieve one additional successful ECV was 5. There was no evidence of statistical heterogeneity (p=0.32, I2=14.9%) or publication bias (Harbord test p=0.78). There was no statistically significant difference in the risk of cesarean delivery comparing regional anesthesia to intravenous or no analgesia (48.4% vs. 59.3%; pooled RR 0.80, 95% CI 0.55-1.17). Adverse events were rare and not significantly different between the two groups.

Does Regional Anesthesia for External Cephalic Version Increase the Risk of Emergent Cesarean Delivery? Obstetrics & Gynecology: May 2016

  • Neuraxial Anesthesia (NA) for External Cephalic Version (ECV) increased the risk of emergent cesarean delivery (CD) without impacting ECV success. These findings differ from previous randomized controlled trials (RCTs). The increased risk and decreased success of our ECVs compared to ECVs performed in the context of RCTs could be explained by patient selection, variation in operator experience or technique, or variation in anesthetic management.  Future studies should further evaluate the risk of NA for ECV in true practice scenarios outside of RCTs.

Clinical outcomes after external cephalic version with spinal anesthesia after failure of a first attempt without anesthesia.  International Journal of Obstetrics & Gynecology. Volume139, Issue3. December 2017: 324-328.

  • Repeat ECV with spinal anesthesia after a failed first attempt without spinal anesthesia increased vertex presentation at birth and decreased the rate of cesarean delivery.

Effect of Intrathecal Bupivacaine Dose on the Success of External Cephalic Version for Breech Presentation: A Prospective, Randomized, Blinded Clinical Trial. Anesthesiology 10 2017, Vol.127, 625-632.

  • Results: A total of 240 subjects were enrolled, and 239 received the intervention. External cephalic version was successful in 123 (51.5%) of 239 patients. Compared with bupivacaine 2.5 mg, the odds (99% CI) for a successful version were 1.0 (0.4 to 2.6), 1.0 (0.4 to 2.7), and 0.9 (0.4 to 2.4) for bupivacaine 5.0, 7.5, and 10.0 mg, respectively (P = 0.99). There were no differences in the cesarean delivery rate (P = 0.76) or indication for cesarean delivery (P = 0.82). Time to discharge was increased 60 min (16 to 116 min) with bupivacaine 7.5 mg or higher as compared with 2.5 mg (P = 0.004).
  • Conclusions: A dose of intrathecal bupivacaine greater than 2.5 mg does not lead to an additional increase in external cephalic procedural success or a reduction in cesarean delivery.

 

 

 

 

Suprascapular Blocks

Trends are evolving in decreasing intraoperative and postoperative opioid use.  Therefore, anesthesiologists are constantly learning new regional techniques to help with postoperative pain.  For shoulder surgeries, I’ve moved away from interscalene blocks toward supraclavicular blocks.  I think the interscalene block provides a better block of a total shoulder surgery, however, certain patient comorbidities often make the supraclavicular block a better choice.

Nice paper from Anesthesiology, Dec 2017: Suprascapular and Interscalene Nerve Block for Shoulder Surgery: A Systematic Review and Meta-analysis. Anesthesiology 12 2017, Vol.127, 998-1013.

Nowadays, it seems that suprascapular blocks are gaining in popularity (I’d probably use it to supplement the supraclavicular block.

Supplies and Technique (from USRA):

Suprascapular Nerve

ssn1

How to position the ultrasound probe:

ssn5
From USRA

05_1_a_shoulder-suprascapular-artery-and-nerve_dsc_5085_copy

Ultrasound Image

ssn4
From USRA.  SSM = supraspinatus muscle
SSA = suprascapular artery
SSN = suprascapular nerve
TZM = trapezius muscle
STSL = superior transverse scapular ligament

05_1_c_shoulder-suprascapular-artery-and-nerve_labels

Useful Links


Update: June 19, 2018

Comparison of Anterior Suprascapular, Supraclavicular, and Interscalene Nerve Block Approaches for Major Outpatient Arthroscopic Shoulder Surgery: A Randomized, Double-blind, Noninferiority Trial. Anesthesiology 7 2018, Vol.129, 47-57.

PEEP Alone Atelectasis
From Anesthesiology, July 2018
  • Conclusions: The anterior suprascapular block, but not the supraclavicular, provides noninferior analgesia compared to the interscalene approach for major arthroscopic shoulder surgery. Pulmonary function is best preserved with the anterior suprascapular nerve block.

Suprascapular blocks

Trends are evolving in decreasing intraoperative and postoperative opioid use.  Therefore, anesthesiologists are constantly learning new regional techniques to help with postoperative pain.  For shoulder surgeries, I’ve moved away from interscalene blocks toward supraclavicular blocks.  I think the interscalene block provides a better block of a total shoulder surgery, however, certain patient comorbidities often make the supraclavicular block a better choice.

Nice paper from Anesthesiology, Dec 2017: Suprascapular and Interscalene Nerve Block for Shoulder Surgery: A Systematic Review and Meta-analysis. Anesthesiology 12 2017, Vol.127, 998-1013.

Nowadays, it seems that suprascapular blocks are gaining in popularity (I’d probably use it to supplement the supraclavicular block.

Supplies and Technique (from USRA):

Suprascapular Nerve

ssn1

How to position the ultrasound probe:

ssn5
From USRA

05_1_a_shoulder-suprascapular-artery-and-nerve_dsc_5085_copy

Ultrasound Image

ssn4
From USRA.  SSM = supraspinatus muscle
SSA = suprascapular artery
SSN = suprascapular nerve
TZM = trapezius muscle
STSL = superior transverse scapular ligament

05_1_c_shoulder-suprascapular-artery-and-nerve_labels

Useful Links

Enhanced Recovery After Surgery (ERAS)

srv160008f1

Enhanced recovery after surgery (ERAS) protocols: Time to change practice? Can Urol Assoc J. 2011 Oct; 5(5): 342–348.

Dario Bugada, Valentina Bellini, Andrea Fanelli, et al., “Future Perspectives of ERAS: A Narrative Review on the New Applications of an Established Approach,” Surgery Research and Practice, vol. 2016, Article ID 3561249, 6 pages, 2016. doi:10.1155/2016/3561249

Enhanced Recovery After Surgery: If You Are Not Implementing it, Why Not? PRACTICAL GASTROENTEROLOGY • APRIL 2016.

A Systematic Review of Enhanced Recovery After Surgery Pathways: How Are We Measuring ‘Recovery?’  Session: Poster Presentation. Program Number: P613

46210

Sturm L and Cameron AL. Fast-track surgery and enhanced recovery after surgery (ERAS) programs. ASERNIP-S Report No. 74. Adelaide, South Australia: ASERNIP-S, March 2009.

Summary of Enhanced Recovery after Surgery Guideline Recommendations. Canada.

Patients Benefit From Enhanced Recovery Programs: Are Better Prepared for Surgery, Have Less Pain, Studies Show. Oct 2016. American Society of Anesthesiologists.

Enhanced Recovery after Surgery Guideline: Perioperative Pain Management in Patients Having Elective Colorectal Surgery: A Quality Initiative of the Best Practice in General Surgery Part of CAHO’s ARTIC program. April 2013.

Preserved Analgesia With Reduction in Opioids Through the Use of an Acute Pain Protocol in Enhanced Recovery After Surgery for Open Hepatectomy. Regional Anesthesia & Pain Medicine: July/August 2017 – Volume 42 – Issue 4 – p 451–457.

Regional Anesthesia for surgery and other comparative studies. Sweden.

ERAS: Role of Anesthesiologist. UTSW.

Stanford Anesthesia ERAS pathway website

13012_2017_597_fig6_html

Enhanced Recovery after Surgery Versus Perioperative Surgical Home: Is It All in the Name? Anesthesia & Analgesia: May 2014 – Volume 118 – Issue 5 – p 901–902

The Role of Regional Anesthesia in ERAS pathways. Sept 2015. UCSF.

ERAS Pathway Improves Analgesia, Opioid Use and PONV Following Total Mastectomy. Anesthesiology News. May 2016.

Anesthesia Practice and ERAS. Cooper University Hospital. 2017.

ERAS: Anesthesia Tutorial of the Week. Number 204. Nov 2010.

ERAS and Anesthesia. Anesthesia Business Consultants. May 2015.

All about ERAS: Why anesthesiologists need to understand this concept. Becker’s ASC Review. June 2015.

hqdefault

I’d love to incorporate my findings and use of lidocaine infusions and ketamine infusions on intraoperative and postoperative pain as a multimodal pain management pathway.